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High School, Algebra

Overview

Two domains in middle school are important in preparing students
for Algebra in high school. In the progression in The Number Sys-
tem, students learn to see all numbers as part of a unified system,
and become fluent in finding and using the properties of operations
to find the values of numerical expressions that include those num-
bers. The Expressions and Equations Progression describes how
students extend their use of these properties to linear equations
and expressions with letters.

The Algebra category in high school is very closely allied with
the Functions category:

• An expression in one variable can be viewed as defining a
function: the act of evaluating the expression is an act of pro-
ducing the function’s output given the input.

• An equation in two variables can sometimes be viewed as
defining a function, if one of the variables is designated as
the input variable and the other as the output variable, and if
there is just one output for each input. This is the case if the
equation is in the form � (expression in �) or if it can be put
into that form by solving for �.

• The notion of equivalent expressions can be understood in
terms of functions: if two expressions are equivalent they de-
fine the same function.

• The solutions to an equation in one variable can be under-
stood as the input values which yield the same output in the
two functions defined by the expressions on each side of the
equation. This insight allows for the method of finding ap-
proximate solutions by graphing the functions defined by each
side and finding the points where the graphs intersect.

Because of these connections, some curricula take a functions-based
approach to teaching algebra, in which functions are introduced
early and used as a unifying theme for algebra. Other more tra-
ditional approaches introduce functions later, after extensive work
with expressions and equations. The separation between Algebra
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and Functions in the standards is not intended to indicate a pref-
erence between these two approaches. It is, however, intended to
specify the difference as mathematical concepts between expres-
sions and equations on the one hand and functions on the other.
Students often enter college-level mathematics courses with an ap-
parent confusion between all three of these concepts. For example,
when asked to factor a quadratic expression a student might in-
stead find the solutions of the corresponding quadratic equation. Or
another student might attempt to simplify the expression sin �

� by
cancelling the � ’s.

The Algebra standards are fertile ground for the standards for
mathematical practice. Two in particular that stand out are MP7,
Look for and make use of structure, and MP8, Look for and express
regularity in repeated reasoning. Students are expected to see how
the structure of an algebraic expression reveals properties of the
function it defines. They are expected to move from repeated rea-
soning with the slope formula to writing equations in various forms
for straight lines, rather than memorizing all those forms separately.
In this way the Algebra standards provide focus in a way different
from the K–8 standards. Rather than focusing on a few topics, stu-
dents in high school focus on a few seed ideas that lead to many
different techniques.

Seeing Structure in Expressions

Students have been seeing expressions since Kindergarten, starting
with arithmetic expressions in Grades K–5 and moving on to alge-
braic expressions in Grades 6–8. The middle grades standards in
Expression and Equations build a ramp from arithmetic in elemen-
tary school to more sophisticated work with algebraic expression
in high school. As the complexity of expressions increase, students

Animal populations

Suppose P and Q give the sizes of two different animal
populations, where Q P. In 1–4, which of the given pair of

expressions is larger? Briefly explain your reasoning in terms of
the two populations.

1. P Q and 2P

2.
P

P Q and
P Q

2

3. Q P 2 and Q P 2

4. P 50� and Q 50�

continue to see them as being built out of basic operations: they
see expressions as sums of terms and products of factors.A-SSE.1a

A-SSE.1a Interpret expressions that represent a quantity in
terms of its context.

a Interpret parts of an expression, such as terms, factors,
and coefficients.

For example, in the example on the right, students compare P Q
and 2P by seeing 2P as P P . They distinguish between Q P 2
and Q P 2 by seeing the first as a quotient where the numerators
is a difference and the second as a difference where the second
term is a quotient. This last example also illustrates how students
are able to see complicated expressions as built up out of simpler
ones.A-SSE.1b As another example, students can see the expression

A-SSE.1b Interpret expressions that represent a quantity in
terms of its context.

b Interpret complicated expressions by viewing one or more
of their parts as a single entity.

5 � 1 2 as a sum of a constant and a square; and then see
that inside the square term is the expression � 1. The first way
of seeing tells them that it is always greater than or equal to 5,
since a square is always greater than or equal to 0; the second
way of seeing tells them that the square term is zero when � 1.
Putting these together they can see that this expression attains its
minimum value, 5, when � 1. The margin lists other tasks from
the Illustrative Mathematics project (illustrativemathematics.org) for

Draft, 12/03/2012, comment at commoncoretools.wordpress.com .



4

A-SSE.1.
Initially, the repertoire of operations for building up expressions

Illustrations of interpreting the structure of expression
The following tasks can be found by going to
http://illustrativemathematics.org/illustrations/ and searching for
A-SSE:

• Delivery Trucks

• Kitchen Floor Tiles

• Increasing or Decreasing? Variation 1

• Mixing Candies

• Mixing Fertilizer

• Quadrupling Leads to Halving

• The Bank Account

• The Physics Professor

• Throwing Horseshoes

• Animal Populations

• Equivalent Expressions

• Sum of Even and Odd

is limited to the operations of arithmetic: addition, subtraction, multi-
plication and division (with the addition in middle grades of exponent
notation to represent repeated multiplication). By the time they get
to college, students have expanded that repertoire to include func-
tions such as the square root function, exponential functions, and
trigonometric functions.

For example, students in physics classes might be expected see
the expression

L0 1
�2

�2
�

which arises in the theory of special relativity, as the product of the
constant L0 and a term that is 1 when � 0 and 0 when � �—and
furthermore, they might be expected to see this mentally, without
having to go through a laborious process of evaluation. This involves
combining large scale structure of the expression—a product of L0

and another term—with the meaning of internal components such
as �2

�2 .
Seeing structure in expressions entails a dynamic view of an

algebraic expression, in which potential rearrangements and ma-
nipulations are ever present.A-SSE.2 An important skill for college A-SSE.2 Use the structure of an expression to identify ways to

rewrite it.readiness is the ability to try out possible manipulations mentally
without having to carry them out, and to see which ones might be
fruitful and which not. For example, a student who can see

2� 1 � � 1

6

as a polynomial in � with leading coefficient 1
3�3 has a leg up when

it comes to calculus; a student who can mentally see the equivalence

R1R2

R1 R2

1
1
R1

1
R2

without a laborious pencil and paper calculation is better equipped
for a course in electrical engineering.

The standards avoid talking about simplification, because it is
often not clear what the simplest form of an expression is, and even

Which form is “simpler”?

A container of ice cream is taken from the freezer and sits in a
room for � minutes. Its temperature in degrees Fahrenheit is
� � 2 � �, where � and � are positive constants.
Write this expression in a form that shows that the temperature
is always

1. Less than � �
2. Greater than �

The form � � � 2 � for the temperature shows that it is
� � minus a positive number, so always less than � �. On
the other hand, the form � � 1 2 � reveals that the
temperature is always greater than �, cause it is � plus a
positive number.

in cases where that is clear, it is not obvious that the simplest form
is desirable for a given purpose. The standards emphasize pur-
poseful transformation of expressions into equivalent forms that are
suitable for the purpose at hand, as illustrated in the problem in the
margin.A-SSE.3

A-SSE.3 Choose and produce an equivalent form of an expres-
sion to reveal and explain properties of the quantity represented
by the expression.

For example, there are three commonly used forms for a quadratic
expression:

• Standard form (e.g. �2 2� 3)

• Factored form (e.g. � 1 � 3 )
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• Vertex (or complete square) form (e.g. � 1 2 4).

Each is useful in different ways. The traditional emphasis on sim-
plification as an automatic procedure might lead students to auto-
matically convert the second two forms to the first, before consider-
ing which form is most useful in a given context.A-SSE.3ab This can a Factor a quadratic expression to reveal the zeros of the

function it defines.

b Complete the square in a quadratic expression to reveal
the maximum or minimum value of the function it defines.

lead to time consuming detours in algebraic work, such as solving
� 1 � 3 0 by first expanding and then applying the quadratic

formula.
The introduction of rational exponents and systematic practice

with the properties of exponents in high school widen the field of op-
erations for manipulating expressions.A-SSE.3c For example, students c Use the properties of exponents to transform expressions

for exponential functions.in later algebra courses who study exponential functions see

P 1
�
12

12� as P 1
�
12

12
�

in order to understand formulas for compound interest.

Illustrations of writing expressions in equivalent forms
The following tasks can be found by going to
http://illustrativemathematics.org/illustrations/ and searching for
A-SSE:

• Ice Cream

• Increasing or Decreasing? Variation 2

• Profit of a company

• Seeing Dots

Much of the ability to see and use structure in transforming
expressions comes from learning to recognize certain fundamental
techniques. One such technique is recognizing internal cancella-
tions, as in the expansion

� � � � �2 �2�

An impressive example of this is

� 1 �� 1 �� 2 � 1 �� 1�

in which all the terms cancel except the end terms. This identity
is the foundation for the formula for the sum of a finite geometric
series.A-SSE.4

A-SSE.4 Derive the formula for the sum of a finite geometric se-
ries (when the common ratio is not 1), and use the formula to
solve problems.

Arithmetic with Polynomials and Rational Expressions

The development of polynomials and rational expressions in high
school parallels the development of numbers in elementary school.
In elementary school students might initially see expressions like
8 3 and 11, or 3

4 and 0�75, as fundamentally different: 8 3 might be
seen as describing a calculation and 11 is its answer; 3

4 is a fraction
and 0�75 is a decimal. Gradually they come to see numbers as
forming a unified system, the number system, represented by points
on the number line, and these different expressions are different
ways of naming an underlying thing, a number.

A similar evolution takes place in algebra. At first algebraic ex-
pressions are simply numbers in which one or more letters are used
to stand for a number which is either unspecified or unknown. Stu-
dents learn to use the properties of operations to write expressions
in different but equivalent forms. At some point they see equiva-
lent expressions, particularly polynomial and rational expressions,
as naming some underlying thing.A-APR.1 There are at least two

A-APR.1 Understand that polynomials form a system analogous
to the integers, namely, they are closed under the operations of
addition, subtraction, and multiplication; add, subtract, and multi-
ply polynomials.
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ways this can go. If the function concept is developed before or
concurrently with the study of polynomials, then a polynomial can
be identified with the function it defines. In this way �2 2� 3,
� 1 � 3 , and � 1 2 4 are all the same polynomial because

they all define the same function. Another approach is to think of
polynomials as elements of a formal number system, in which you
introduce the “number” � and see what numbers you can write down
with it. Each approach has its advantages and disadvantages; the
former approach is more common. Whichever is chosen, a curricular
implementation might not necessarily explicitly state the choice, but
should nonetheless be constructed in accordance with the implicit
choice that has been made.

Either way, polynomials and rational expressions come to form
a system in which things can be added, subtracted, multiplied and
divided.A-APR.7 Polynomials are analogous to the integers; rational

A-APR.7(+) Understand that rational expressions form a system
analogous to the rational numbers, closed under addition, sub-
traction, multiplication, and division by a nonzero rational expres-
sion; add, subtract, multiply, and divide rational expressions.expressions are analogous to the rational numbers.

Polynomials form a rich ground for mathematical explorations
that reveal relationships in the system of integers.A-APR.4 For exam- A-APR.4 Prove polynomial identities and use them to describe

numerical relationships.ple, students can explore the sequence of squares

1� 4� 9� 16� 25� 36� � � �

and notice that the differences between them—3, 5, 7, 9, 11—are
consecutive odd integers. This mystery is explained by the polyno-
mial identity

� 1 2 �2 2� 1�
A more complex identity,

�2 �2 2 �2 �2 2 2�� 2�

allows students to generate Pythagorean triples. For example, tak-
ing � 1 and � 2 in this identity yields 52 32 42.

A particularly important polynomial identity, treated in advanced+

courses, is the Binomial TheoremA-APR.5
A-APR.5(+) Know and apply the Binomial Theorem for the ex-
pansion of � � � in powers of � and � for a positive integer �,
where � and � are any numbers, with coefficients determined for
example by Pascal’s Triangle.1

+

� � � �� �
1

�� 1� �
2

�� 2�2 �
3

�� 3�3 �2�

for a positive integer �. The binomial coefficients can be obtained+

using Pascal’s triangle+

� 0: 1
� 1: 1 1
� 2: 1 2 1
� 3: 1 3 3 1
� 4: 1 4 6 4 1

+

in which each entry is the sum of the two above. Understanding+

why this rule follows algebraically from+

� � � � � 1 � � �
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is excellent exercise in abstract reasoning (MP2) and in expressing+

regularity in repeated reasoning (MP8).+

Viewing polynomials as functions leads to explorations of a different
nature. Polynomial functions are, on the one hand, very elemen-
tary, in that, unlike trigonometric and exponential functions, they
are built up out of the basic operations of arithmetic. On the other
hand, they turn out to be amazingly flexible, and can be used to
approximate more advanced functions such as trigonometric and ex-
ponential functions. Although students only learn the complete story
here if and when they study calculus, experience with constructing
polynomial functions satisfying given conditions is useful prepara-
tion not only for calculus, but for understanding the mathematics
behind curve-fitting methods used in applications to statistics and
computer graphics.

A simple step in this direction is to construct polynomial functions
with specified zeros.A-APR.3 This is the first step in a progression

A-APR.3 Identify zeros of polynomials when suitable factoriza-
tions are available, and use the zeros to construct a rough graph
of the function defined by the polynomial.which can lead, as an extension topic, to constructing polynomial

functions whose graphs pass through any specified set of points in
the plane.

The analogy between polynomials and integers carries over to
the idea of division with remainder. Just as in Grade 4 students
find quotients and remainders of integers,4.NBT.6 in high school they

4.NBT.6Find whole-number quotients and remainders with up to
four-digit dividends and one-digit divisors, using strategies based
on place value, the properties of operations, and/or the relation-
ship between multiplication and division. Illustrate and explain the
calculation by using equations, rectangular arrays, and/or area
models.

find quotients and remainders of polynomials.A-APR.6 The method

A-APR.6 Rewrite simple rational expressions in different forms;
write � �

� � in the form � � � �
� � , where � � , � � , � � , and

� � are polynomials with the degree of � � less than the degree
of � � , using inspection, long division, or, for the more compli-
cated examples, a computer algebra system.

of polynomial long division is analogous to, and simpler than, the
method of integer long division.

A particularly important application of polynomial division is the
case where a polynomial � � is divided by a linear factor of the
form � �, for a real number �. In this case the remainder is the
value � � of the polynomial at � �.A-APR.2 It is a pity to see this

A-APR.2 Know and apply the Remainder Theorem: For a poly-
nomial � � and a number �, the remainder on division by � �
is � � , so � � 0 if and only if � � is a factor of � � .

topic reduced to “synthetic division,” which reduced the method to
a matter of carrying numbers between registers, something easily
done by a computer, while obscuring the reasoning that makes the
result evident. It is important to regard the Remainder Theorem as
a theorem, not a techique.

A consequency of the Remainder Theorem is to establish the
equivalence between linear factors and zeros that is the basis of
much work with polynomials in high school: the fact that � � 0
if and only if � � is a factor of � � . It is easy to see if � � is a
factor then � � 0. But the Remainder Theorem tells us that we
can write

� � � � � � � � for some polynomial � � �

In particular, if � � 0 then � � � � � � , so � � is a
factor of � � .
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Creating Equations

Students have been writing equations, mostly linear equations, since
middle grades. At first glance it might seem that the progression
from middle grades to high school is fairly straightforward: the
repertoire of functions that is acquired during high school allows stu-
dents to create more complex equations, including equations arising
from linear and quadratic functions, and simple rational and expo-
nential functions;A-CED.1 students are no longer limited largely to A-CED.1 Create equations and inequalities in one variable and

use them to solve problems.linear equations in modeling relationships between quantities with
equations in two variables;A-CED.2; and students start to work with A-CED.2 Create equations in two or more variables to represent

relationships between quantities; graph equations on coordinate
axes with labels and scales.

inequalities and systems of equations.A-CED.3

A-CED.3 Represent constraints by equations or inequalities, and
by systems of equations and/or inequalities, and interpret solu-
tions as viable or nonviable options in a modeling context.

Two developments in high school complicate this picture. First,
students in high school start using parameters in their equations, to
represent whole classes of equationsF-LE.5 or to represent situations

F-LE.5 Interpret the parameters in a linear or exponential func-
tion in terms of a context.

where the equation is to be adjusted to fit data.•

•
Analytic modeling seeks to explain data on the

basis of deeper theoretical ideas, albeit with pa-
rameters that are empirically based; for example,
exponential growth of bacterial colonies (until cut-
off mechanisms such as pollution or starvation in-
tervene) follows from a constant reproduction rate.
Functions are an important tool for analyzing such
problems.

CCSSM, page 73

Second, modeling becomes a major objective in high school. Two
of the standards just cited refer to “solving problems” and “inter-
preting solutions in a modeling context.” And all the standards in
the Creating Equations domain carry a modeling star, denoting their
connection with the Modeling category in high school. This connotes
not only an increase in the complexity of the equations studied, but
an upgrade of the student’s ability in every part of the modeling
cycle, shown in the margin.

The Modeling Cycle

Problem Formulate Validate Report

Compute Interpret

Variables, parameters, and constants Confusion about these terms
plagues high school algebra. Here we try to set some rules for us-
ing them. These rules are not purely mathematical; indeed, from
a strictly mathematical point of view there is no need for them at
all. However, users of equations, by referring to letters as variables,
parameters, or constants, can indicate how they intend to use the
equations. This usage can be helpful if it is consistent.

In elementary and middle grades, life is easy. Elementary stu-
dents solve problems with an unknown quantity, might use a symbol
to stand for that quantity, and might call the symbol an unknown.1.OA.2

1.OA.2Solve word problems that call for addition of three whole
numbers whose sum is less than or equal to 20, e.g., by using
objects, drawings, and equations with a symbol for the unknown
number to represent the problem.

In middle school students use variables systematically.6.EE.6 They

6.EE.6Use variables to represent numbers and write expressions
when solving a real-world or mathematical problem; understand
that a variable can represent an unknown number, or, depending
on the purpose at hand, any number in a specified set.

work with equations in one variable, such as � 0�05� 10 or
equations in two variables such as � 5 5� , relating two varying
quantities.• In each case, apart from the variables, the numbers in

• Some writers prefer to retain the term unknown” for the first
situation and the word “variable” for the second. This is not the
usage adopted in the Standards.

the equation are given explicitly. The latter use presages the use of
varibles to define functions.

In high school, things start to get complicated. For example,
students consider the general equation for a straight line, � ��
�. Here they are expected to understand that � and � are fixed for
any given straight line, and that by varying � and � we obtain a
whole family of straight lines. In this situation, � and � are called
parameters. Of course, in an episode of mathematical work, the
perspective could change; students might end up solving equations
for � and �. Judging whether to explicitly indicate this—”now we
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will regard the parameters as variables”—or whether to ignore it and
just go ahead and solve for the parameters is a matter of pedagogical
judgement.

Sometimes, and equation like � �� � is used not to work
with a parameterized family of equations but to consider the general
form of an equation and prove something about it. For example, you
might want take two points �1� �1 and �2� �2 on the graph of
� �� � and show that the slope between them is �. In this
situation you might refer to � and � as constants rather than as
parameters.

Finally, there are situations where an equation is used to de-
scribe the relationship between a number of different quantities,
two which none of these terms apply.A-CED.4 For example, Ohm’s

A-CED.4 Rearrange formulas to highlight a quantity of interest,
using the same reasoning as in solving equations.Law V IR relates the voltage, current, and resistance of an elec-

trical circuit. An equation used in this way is sometimes called a
formula. It is perhaps best to avoid entirely using the terms variable,
parameter or constant when working with this formula, since there
are 6 different ways it can be viewed as a defining one quantity as
a function of the other with a third held constant.

Different curricular implementations of the standards might navi-
gate these terminological shoals differently (including trying to avoid
them entirely).

Modeling with equations Consider the Formulate node in the mod-
eling cycle. In elementary school students learn to formulat an equa-

The Modeling Cycle

Problem Formulate Validate Report

Compute Interpret

tion to solve a word problem. For example, in solving

Selina bought a shirt on sale that was 20% less than
the original price. The original price was $5 more than
the sale price. What was the original price? Explain or
show work.

students might let � be the original price in dollars and then express
the sale price in terms of � in two different ways and set them equal.
On the one hand the sale price is 20% less than the original price,
and so equal to � 0�2�. On the other hand it is $5 less than the
original price, and so equal to � 5. Thus they want to solve the
equation

� 0�2� � 5�

In this task, he formulation of the equation tracks the text of the
problem fairly closely, but requires more than a keyword reading of
the text. For example, the second sentence needs to be reinterpreted
as “the sale price is $5 less than the original price.” Since the words
“less” and “more” are typically the subject of schemes for guessing
the operation required in a problem without reading it, this shift is
significant, and prepares students to read more difficult and realistic
task statements.

Indeed, in a typical high school modeling problem, there might
be significantly different ways of going about a problem depending
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on the choices made, and students must be much more strategic in
formulating the model.

The Compute node of the modeling cycle is dealt with in the next
section, on solving equations.

The Interpret node also becomes more complex. Equations in
high school are also more likely to contain parameters than equa-
tions in earlier grades, and so interpreting a solution to an equation
might involve more than consideration of a numerical value, but con-
sideration of how the solution behaves as the parameters are varied.

The Validate node of the modeling cycle pulls together many
of the standards for mathematical practice, including the modeling
standard itself (MP4).

Reasoning with Equations and Inequalities

Equations in one variable
A naked equation, such as �2 4, without any surrounding text, is
merely a sentence fragment, neither true nor false, since it contains
a variable � about which nothing is said. A written sequence of steps
to solve an equation, such as in the margin, is code for a narrative

Fragments of reasoning

�2 4

�2 4 0

� 2 � 2 0

� 2� 2

This sequence of equations is short-hand for a line of reasoning:
“If � is a number whose square is 4, then �2 4 0. Since
�2 4 � 2 � 2 for all numbers �, it follows that
� 2 � 2 0. So either � 2 0, in which case � 2,

or � 2 0, in which case � 2.” More might be said: a
justification of the last step, for example, or a check that 2 and

2 actually do satisfy the equation, which has not been proved
by this line of reasoning.

line of reasoning using words like “if”, “then”, “for all” and “there
exists.” In the process of learning to solve equations, students learn
certain standard “if-then” moves, for example “if � � then � 2
� 2.” The danger in learning algebra is that students emerge
with nothing but the moves, which may make it difficult to detect
incorrect or made-up moves later on. Thus the first requirement in
the standards in this domain is that students understand that solving
equations is a process of reasoning.A-REI.1 This does not necessarily A-REI.1 Explain each step in solving a simple equation as follow-

ing from the equality of numbers asserted at the previous step,
starting from the assumption that the original equation has a so-
lution. Construct a viable argument to justify a solution method.

mean that they always write out the full text; part of the advantage
of algebraic notation is its compactness. Once students know what
the code stands for, they can start writing in code. Thus, eventually
students might make �2 4 � 2 one step.2

Understanding solving equations as a process of reasoning de-
mystifies “extraneous” solutions that can arise under certain solution
procedures.A-REI.2 The flow of reasoning is forward, from the assump-

A-REI.2 Solve simple rational and radical equations in one vari-
able, and give examples showing how extraneous solutions may
arise.tion that a number � satisfies the equation to a list of possibilites for

� . But not all the steps are necessarily reversible, and so it is not
necessarily true that every number in the list satisfies the equation.
For example, it is true that if � 2 then �2 4. But it is not true
that if �2 4 then � 2 (it might be that � 2). Squaring both
sides of an equation is a typical example of an irreversible step;
another is multiplying both sides of the equation by a quantity that
might be zero (see margin for examples).

With an understanding of solving equations as a reasoning pro-
cess, students can organize the various methods for solving different

2It should be noted, however, that calling this step “taking the square root of both
sides” is dangerous, since it leads to the erroneous belief that 4 2.
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types of equations into a coherent picture. For example, solving
linear equations involves only steps that are reversible (adding a
constant to both sides, multiplying both sides by a non-zero con-
stant, transforming an expression on one side into an equivalent
expression). Therefore solving linear equations does not produce ex-
traneous solutions.A-REI.3 The process of completing the square also

A-REI.3 Solve linear equations and inequalities in one variable,
including equations with coefficients represented by letters.involves only this same list of steps, and so converts any quadratic

equation into an equivalent equation of the form � � 2 � that
has exactly the same solutionsA-REI.4a The latter equation is easy to

A-REI.4a Solve quadratic equations in one variable.
a Use the method of completing the square to transform any

quadratic equation in � into an equation of the form �
� 2 � that has the same solutions. Derive the quadratic
formula from this form.

solve by the reasoning explained above.
This example sets up a theme that reoccurs throughout algebra;

finding ways of transforming equations into certain standard forms
that have the same solutions. For example, any exponential equation
can be transformed into the form �� �, the solution to which is
(by definition) a logarithm.

It is traditional for students to spend a lot of time on various
techniques of solving quadratic equations, which are often presented
as if they are completely unrelated (factoring, completing the square,
the quadratic formula). In fact, as we have seen, the key step in
completing the square, going from �2 � to � �, involves at
its heart factoring. And the quadratic formula is nothing more than
an encapsulation of the method of completing the square. Rather
than long drills on techniques of dubious value, students with an
understanding of the underlying reasoning behind all these methods
are opportunistic in their application, choosing the method that bests
suits the situation at hand.A-REI.4b b Solve quadratic equations by inspection (e.g., for �2

49), taking square roots, completing the square, the
quadratic formula and factoring, as appropriate to the ini-
tial form of the equation. Recognize when the quadratic
formula gives complex solutions and write them as � ��
for real numbers � and �.

Systems of equations
Student work with solving systems of equations starts the same
way as work with solving equations in one variable; with an under-
standing of the reasoning behind the various techniques.A-REI.5 An A-REI.5 Prove that, given a system of two equations in two vari-

ables, replacing one equation by the sum of that equation and a
multiple of the other produces a system with the same solutions.

important step is realizing that a solution to a system of equations
must be a solution all of the equations in the system simultaneously.
Then the process of adding one equation to another is understood
as “if the two sides of one equation are equal, and the two sides of
another equation are equal, then the sum of the left sides of the two
equations is equal to the sum of the right sides.” Since this reasoning
applies equally to subtraction, the process of adding one equation
to another is reversible, and therefore leads to an equivalent system
of equations.

Understanding these points for the particular case of two equa-
tions in two variables is preparation for more general situations.
Such systems also have the advantage that a good graphical visu-
alization is available; a pair �� � satisfies two equations in two
variables if it is on both their graphs, and therefore an intersection
point of the graphs.A-REI.6

A-REI.6 Solve systems of linear equations exactly and approxi-
mately (e.g., with graphs), focusing on pairs of linear equations in
two variables.Another important method of solving systems is the method of

substitution. Again this can be understood in terms of simultaneity;
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if �� � satisfies two equations simultaneously, then the expression
for � in terms of � obtained from the first equation should form a
true statement when substituted into the second equation. Since a
linear equation can always be solved for one of the variables in it,
this is a good method when just one of the equations in a system is
linear. A-REI.7

A-REI.7 Solve a simple system consisting of a linear equation
and a quadratic equation in two variables algebraically and graph-
ically.In more advanced courses, students see systems of linear equa-+

tions in many variables as single matrix equations in vector vari-+

ables.A-REI.8, A-REI.9 A-REI.8(+) Represent a system of linear equations as a single
matrix equation in a vector variable.

A-REI.9(+) Find the inverse of a matrix if it exists and use it to
solve systems of linear equations (using technology for matrices
of dimension 3 3 or greater).

+

Visualizing solutions graphically
Just as the algebraic work with equations can be reduced to a series
of algebraic moves unsupported by reasoning, so can the graph-
ical visualization of solutions. The simple idea that an equation
� � � � can be solved (approximately) by graphing � � �
and � � � and finding the intersection points involves a number
of pieces of conceptual understanding.A-REI.11 This seemingly simple

A-REI.11 Explain why the �-coordinates of the points where the
graphs of the equations � � � and � � � intersect are the
solutions of the equation � � � � ; find the solutions approx-
imately, e.g., using technology to graph the functions, make ta-
bles of values, or find successive approximations. Include cases
where � � and/or � � are linear, polynomial, rational, absolute
value, exponential, and logarithmic functions.

method, often treated as obvious, involves the rather sophisticated
move of reversing the reduction of an equation in two variables to an
equation in one variable. Rather, it seeks to convert an equation in
one variable, � � � � , to a system of equations in two variables,
� � � and � � � , by introducing a second variable � and
setting it equal to each side of the equation. If � is a solution to the
original equation then � � and � � are equal, and thus �� � is
a solution to the new system. This reasoning is often tremendously
compressed and presented as obvious graphically; in fact following
it graphically in a specific example can be instructive. [Give example
in margin.]

Fundamental to all of this is a simple understanding of what a
graph of an equation in two variables means.A-REI.10

A-REI.10 Understand that the graph of an equation in two vari-
ables is the set of all its solutions plotted in the coordinate plane,
often forming a curve (which could be a line).
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