Long Term Transfer Goals

I will become a productive citizen, a consumer of information, and will make sound decisions for success in life.

- Think purposefully using mathematical reasoning to analyze and model new problem situations.
- Make sense of and be tenacious in solving real world problems, seeking out and using appropriate tools and resources.
- Communicate mathematical ideas clearly, constructing viable arguments and using precise mathematical language
- Collaborate confidently and respectfully toward a common goal, advocating for all team members to have a voice.

Unit:	Understandings	Focus/Essential Questions	Summative Assessment	Tasks (Specific problems mapped to understandings and what to highlight/modify)	Classroom (Formative) Assessments	Time	Reflection
1)Moving Straight Ahead	1. Students will understand that the rate of change is the covariation between two variables through a variety of representations (table, graph, equation, words, diagrams, etc.)	 How can multiple representations be used to model linear relations? What are the defining characteristics of linear relations? How can equations be solved by manipulating symbols? 4. 	A: M:#1, #2 T:	Investigation 1: walking rates ACE #30 Investigation 2: exploring linear relationships with graphs and tables Investigation 4: exploring slope- connecting rates and ratios	Check up #1	25 days	
	2. Students will understand that linear relationships are composed of a constant pattern of change and a y- intercept.	 How can we find the constant rate of change/slope from an equation, graph, and a table? What information does the y- intercept of a linear relationship represent? What are the independent variables in situation 4. 	A: M: #3, 4, 10-14 T:	Investigation 1: walking rates ACE #30 Investigation 4: exploring slope- connecting rates and ratios	Partner quiz		
	3. Students will understand how to select a representation (table, graph, equation, words, diagrams, etc.) for linear relationships given a situation	 How to determine if a set of data points have a linear relationship from a table? How can we use a table of data points representing a linear relationship to write an equation? How can you match the appropriate table with the corresponding graph and equation? How can you convert a verbal description of a linear relationship into a table, graphing and equation? 	A: M: T: #6-9	Investigation 2: exploring linear relationships with graphs and tables Investigation 4: exploring slope- connecting rates and ratios	Partner quiz		
2)Thinking with Mathematical	1.Students will understand that linear and non linear data patterns can be represented	1.What are the key variables in a situation?	A: M: #2a, 3a-c	Investigation 1: exploring data patterns		20 days	

			1	1	1	
Models	using graphs, tables, word descriptions, and algebraic expressions	 What is the pattern relating the variables? How can I represent this relationship? 4. 	Т:			
	2. Students will understand that mathematical models can be used to analyze and solve linear relationships.	 1.What is a mathematical model? 2. How can a mathematical model be used to solve problems? 3. How can I use a mathematical model to answer questions about a relationship? 4. 	A: #1d-f M: #2b-c T: #2d	Investigation 2: linear models and equations		
	3. Students will understand that a line of best fit can be used to make predictions on a given set of data	1.How can data be approximated by a linear relation?2.3.4.	A:#1a M: T:	Investigation 4: variability and association in numeric data		
	4. Students will understand that bivariate data can be analyzed to determine the strength of linear association illustrated by scatter plots	1.If there is a pattern relating the variables, is it strong enough to allow predictions to be made?3.4	A: 1b M: #1c T:	Investigation 4: variable and association in numeric data		
	5. Students will understand how to distinguish between categorical and numerical variables in two way data tables.	 How can two way tables be used to find associations between variables 3. 4 	A: M:#4 a-c T: #4d	Investigation 5: variability and association in categorical data		
3)Butterflies, Pinwheels, & Wallpaper	1. Students will recognize properties and explore techniques for using rigid motion transformations (reflection, rotation, translation) to create congruent figures.	 1.What are the properties/characteristics of rigid motion transformations? 2. How can transformations be used to understand congruence and similarity of geometric shapes? 3. 4. 	A: M:1 T: 2b	Investigation 1:symmetry and transformations Investigation 2: Transformations and congruence	30 days	
	2. Students will develop and use coordinate rules for basic rigid motion transformations.	 What are the properties/characteristics of rigid motion transformations on a coordinate grid? How can transformations on a coordinate grid be used to understand congruence and 	A: 4-7 M:3 T:	Investigation 3: transforming coordinates		

		similarity of geometric shapes?			
	3. Students will recognize that two figures are congruent if one is derived from the other by a sequence of reflection, rotation, and/or transformations	 1.What are the properties/characteristics of rigid motion transformations? 2. How can transformations be used to understand congruence and similarity of geometric shapes? 3. how can you use transformations to check whether two figures are similar or not? 	A: M: 2a T:	Investigation 1: symmetry and transformations	
	4. Students will understand that similar figures are the result of a sequence of rigid rigid motion and a dilation.	 1.what figures in problem are similar? 2. what coordinate rules mobel dilations? 3. how do dilations change or preserve the properties of the original figure? 	A: 1,3, 14, 15, 17 M: 13, 16, 20 T:	Investigation 3:transforming coordinates	
	5 Students will understand the angle relationship created by parallel lines and transversals.	 1.What are the angle relationships are created by parallel lines and transversals? 2. What transformations can be used to show angle relationships created by parallel lines and transversals? 3. What is always true about the angle measures of a triangle? 4. How can I relate angle sums of a triangle to angle pairs formed by two parallel lines and a transversal. 	A: 2, 4-12 M: 18, 19, T:	Investigation 3.5 and supplemental material	
4) Say it with Symbols	1. Students will understand that the properties of real numbers can be used to write equivalent expressions.	 What strategies can you use to solve equations that contain parentheses? What are strategies for finding a solution that is common to two-variable linear equations? What are some strategies for factoring a quadratic expression? 	A: 1c, 2a, 2b M: T:	Investigation 3	
	2. Students will understand that different symbolic expressions are mathematically equivalent.	 What are some advantages and disadvantages of using one equation rather than two or more equations to represent a situation? What are some ways you 	A: 1a, 2a M: 1b, 2b T:	Investigation 2	

15 davs	
uays	

		can combine one or more expressions to create a new				
		expression?				
	3. Students will understand that algebraic equations can be used to describe the relationship among the volumes of cylinders, cones and spheres that have the same height and radius.	 What equations represent the relationships among the volumes of cylinders, cones and spheres? What formulas are useful in solving problems involving volumes of cylinders, cones and spheres? 	A: 3c M: 3a, 3b, 4 T:	Investigation 2		
	4. Students will understand that you can interpret the information that equivalent expressions represent in a given context.	 How can you use an equation to answer particular questions about a function and the situation it represents? How can two different contexts be represented by the same equation? How can you determine which function to use to solve or represent a problem? 	A: 6a, 6b M: 6c, 6d T:	Investigation 4		
5) It's In the system	1.Students will understand that linear equations in two variables in can be represented in standard form Ax + By =C is equivalent to the form y=mx+b.	1.How can you change an equation from the Ax+By=C form to an equivalent y=mx+b form and vice versa?	A: M: 2 T:	Investigation 1	15 days	
	2. Students will understand that linear equations has infinitely many solutions (x,y) and the graph of those solutions is a straight line.	 1.What kind of solutions will be found for an equation with two variables in form ax+by=c? 2. what kind of solutions will be found for an equation with variables in the form y=mx+b. 3.what will the graph these solutions look like? 	A: M: 7c T:	Investigation 1 Investigation 2		
	3.Students will understand strategies to solve linear equations in two variables by using diagrams, graphs and with algebraic methods	 1.How can you solve a system of two linear equations with two variables using the equations (or equivalent forms)? 2.How can you solve a sytem of linear equations by combining the two equations into a single equation using addition or subtraction? 	A: 1, 3 M: 2 T:	Investigation 1 Investigation 2		
	4.Students will understand that solving a system of linear equations is equivalent to finding the values that will simultaneously satisfy all equations in the system.	1.what does it mean to have a common solution?2.how are solutions show in the graph of the system?	A: 3,4, 6 M: T: 5	Investigation 1 Investigation 2		

	5. Students will understand that systems of linear equations can have exactly one solution, infinitely many solutions, or no solutions.	1.what are solution possibilities for systems?2.what do the solution possibilities look like? (on a table, graph, diagrams, equation)	A: M: 7b, 7c T:	Investigation 1 Investigation 2		
6) Growing, Growing, Growing	1.Students will understand exponential functions through patterns in tables.	 1.How can we represent an exponential function with a table, graph, or equation? 2.What patterns do we notice in exponential functions? 3.How can we compare patterns found in exponential functions? 	A: M: T: need to create summative assessment		10 days	
	2. Students will develop rules and patterns to write and interpret equivalent expressions using exponents.	 1.How can we represent an exponential funciton with a table, graph, or equation? 2.How does the growth factor effect an exponential function? 3.How does the initial value affect an exponential function? 4.Why do these rules we developed work? 	A: M: T:			
	3. Students will understand that rules and patterns for exponents are used in expressing an expression in scientific notation.	 1.How can we use our exponent rules to write numerical expressions in scientific notation? 2.how can we interpret numerical expressions in scientific notation? 3.How can we operate with numerical expressions in scientic notation? 	A: M: T:			
7) Functions	1.Students will understand functions as relations in which each input value has only one output value.	1.How can we describe a relation?2.How can we describe a function?3.How can we identify a relation or a funciton using a table, graph, equation, or diagram?	need to revise summative assessment		5 days	
8) Looking for Pythagoras					30 days	