Grade: 8

UNIT OVERVIEW

STAGE ONE: Identify Desired Results			
Established	Long-Term T	ransfer Goal	
Goals/	At the end of this unit, students will use what the	hey have learned to independently	
Standards	Using explicit language (accelerating, moving a	t constant speed), describe and measure the	
Standards	movement of cars on a nearby street. They will	develop their own investigation to	
5 1 Describe	determine if there is a speeding problem and c	reate a model to demonstrate the forces	
J.I Describe	involved in a car collision in terms of Newton's three laws to argue for the importance of car		
different	safety. Is there a speeding problem around East and why should we care?		
patterns of			
motion of	Meaning		
objects	Enduring Understandings	Essential Questions	
	Students will understand that	Students will consider such questions as	
	Energy and matter interact through forces	Is there a speeding problem around East	
	that result in changes in motion	and why should we care?	
	that result in changes in motion.	How can the motion of an object be	
	The motion of an object can be represented	represented?	
	and prodicted by its position and speed	representeu:	
	Speed is the rate of change	How can we develop and use mathematical	
	speed is the rate of change.	models and diagrams to describe and	
	Nowton's First low says on object at rost or in	predict the motion of an object in one	
	newton's First law says an object at rest or in	dimension?	
	motion will remain that way unless a force	How do forces affect the way our world	
	Nowton's second law says that when an	moves?	
	object folls an unbalanced not force its	How do forces affect an object's energy?	
	motion changes. Newton's third law state	now do forces affect an object's chergy:	
	that for every applied force there is an equal		
	and opposite force		
	Acquisition	1	
	What knowledge will students learn as part	What skills will students learn as part of this	
	of this unit?	unit?	
		Use meter sticks to appropriately measure	
	key terms - distance average speed and	distance or length in meters and	
	acceleration	centimeters.	
		Use a stopwatch to measure time of travel	
	5 1a The motion of an object is always	in minutes and seconds.	
	judged with respect to some other object or	Interpret constant speed vs. time graphs.	
	point. The idea of absolute motion or rest is	Describe acceleration using a speed vs. time	
	misleading	graph.	
	insiedenig.	Describe motion in terms of distance, time,	
	5 1h The motion of an object can be	speed, and acceleration.	
	described by its position direction of	Solve simple kinematics problems using the	
	motion and speed (rate of change)	formula v = d/t	
		determine the speed and acceleration of a	
	Energy and matter interact through forces	moving object.	
	that result in changes in motion	Describe different patterns of motion of	
	that result in changes in motion.	objects.	
	A to Energy can be considered to be either	Develop scientific procedures.	
	HITE LITERSY CALL DE CONSIDERED LO DE EILITER	collect, organize, and analyze data	
	motion or notential energy which depends	Report findings.	

 on relative position 5.1c An object's motion is the result of the combined effect of all forces acting on the object. A moving object that is not subjected to a force will continue to move at a constant speed in a straight line. An object at rest will remain at rest. 5.1e For every action there is an equal and opposite reaction. 	 Identify situations as "explainable" by newton's laws Identify different situations as examples of Newton's laws and how those laws are applied Make force diagrams that show all forces acting on an object
---	--

STAGE TWO: Determine Acceptable Evidence		
	Assessment Evidence	
Criteria to assess understanding: (This is used to build the scoring	Performance Task focused on Transfer: Students develop and run an investigation in which they investigate whether or	
 tool.) Report must include Clearly Stated question Clearly Stated hypothesis that relates distance time and speed Procedures are 	not there is a speeding problem on East Main Street / Culver Road. Students must decide which variables to measure, what instruments they will use and how they will go about performing their investigation. Students create a model demonstrating the forces involved in a collision in order to explain the importance of car safety.	
 clearly written as a step by step process All average speed calculations are correct with clearly labeled variables Data is represented in tables and/or graphs 	Other Assessment Evidence: Unit ILS style quiz Daily Bridge Daily Summary/Closure Questions Daily Extended learning Activities Lab Reports Teacher observations	
Force diagram accurately depicts the direction and relative sizes of all forces involved in a collision. Explanation includes how each of Newton's laws		

the diagram.	
Conclusions and	
recommendations are	
backed up by data	

T, M, A (Code for Transfer, Meaning Making and Acquisition)	STAGE THREE: Plan Learning Experiences	
A: Acquisition	Evidence of learning: (formative assessment)	
M: Meaning	Summary + Closure at end of each lesson utilizing the "Workshop Model".	
Making	Investigation reports if applicable.	
T: Transfer		
1. A, M	Learning Events:	
2. A, M	 Day 1: How can we describe motion? (defining position, time, and speed) 	
3. M <i>,</i> T	a. Motion in sports video.	
4. A, M	b. Students move through stations that depict different ways to describe	
5. A, M	motion.	
6. M <i>,</i> T	Day 2: How can we represent motion? (graphing distance vs. time)	
7. A, M	 a. Students complete an investigation looking at how we can represent 	
8. A, M	distance and time graphically and how it relates to an object's speed.	
9. A, M	3. Day 3: What can mathematical models tell us about motion? (interpreting distance	
10. A, M	v. time graphs)	
11. M <i>,</i> T	a. Students interpret distance vs. time graphs to write a story about the motion	
12. T	of an object.	
13. T	Day 4: What is speed? (calculating speed of objects)	
14. T	a. Students apply knowledge of the relationship between distance and time to	
15. T	find the speed of objects.	
16. T	Day 5: Do moving things have energy? (potential & kinetic energy)	
	 Investigation crashing objects into playdough to determine how mass, 	
	speed, and drop height affect an object's energy.	
	6. Day 6: What makes a good balloon rocket? (applying speed, kinetic, & potential)	
	a. Students investigate the variables that affect the speed of balloon rockets by	
	measuring their distance traveled over time.	
	7. Day 7: Why do things move / What causes changes in energy? (intro to forces as	
	push/pull)	
	 a. Students brainstorm and diagram instances of push and pulls in their everyday life. 	
	8. Day 8: When will an object gain/lose energy? (Newton's 1st Law)	
	a. Students predict, observe, and explain a series of demonstrations of	
	newton's first law.	
	9. Day 9: Do all objects gain/lose energy equally? (Newton's 2nd Law)	
	a. Students investigate how changing the mass of an object changes how it	
	responds to a force.	
	10. Day 10: How do rockets move? (Newton's 3rd Law)	
	a. Students investigate the relationship between action and reaction forces.	
	11. Day 11: Where do we experience forces? (Application of forces & laws)	

 a. Students work in pairs to create a charade demonstrating one or more of Newton's laws in everyday life.
12. Day 12-16: Answering essential question (Is there a speeding problem around East
and why should we care?) (Creating and running own investigation, revising based
on feedback/experiences, scientific argumentation)
 a. Create investigation document in small groups (question, hypothesis, procedure, etc).
 Practice investigation with toy cars and revise investigation document based on feedback.
 c. Conduct investigation and analyze results to determine if there is a speeding problem.
 Create force diagram demonstrating forces involved in a car collision. (may switch with previous days depending on weather).
 e. Write report on the importance of car safety using evidence from investigation and force diagram.