Overview of Year

Geometry Mathematics Curriculum

SEPT	ОСТ	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE
	Unit 1		1	Unit 2	I	Unit 3	Uni	it 4	
S	hadows		Geometry By Design		Do	Orchard Hideout			
-	25 days		- 25 days		Bees Build It	-25 (25 days		
						Best?			
						-5 days			

Unit 1	Understanding	Essential Question
Shadows	 Similarity and congruence Similarity and triangles Similarity and right triangle trigonometry Similarity and proportionality Angle sum formulas for polygons Triangle inequality and extension to other polygons Angles relationships in parallel lines cut by a transversal Vertical angles and angle sums in polygons Solving problems using similarity Solving problems using right triangle trigonometry Similarity proofs Radian measure 	What is the relationship between similarity and size transformations? How can deductive arguments be used to show similarity of two figures? What are the special properties of similar triangles and how do these properties lead to the definition of the trigonometric ratios?
Performance Tas	<u> </u>	

Unit 2	Understanding	Essential Question
--------	---------------	--------------------

Geometry by	Basic constructions	What is the relationship
Design	 Triangle congruence theorems Use of triangle congruence theorems to prove properties of triangles and quadrilaterals 	between congruence and the rigid transformations?
	 Transformations Use of transformations to prove properties of triangles and quadrilateral, 	How can deductive arguments be used to show congruence of two figures?
	 Triangle congruence proofs Use of transformations to solve problems 	What are the special properties of triangles and quadrilaterals?
Performance Tas	sk:	

Unit 3	Understanding	Essential Question
Do Bees Build It Best?	 Area and perimeter Surface area and volume Pythagorean theorem Properties of trigonometric ratios in triangles Mean proportional Relationships between the perimeters, areas, surface areas, and volumes of similar figures 	How can area and volume formulas be developed? How can area and volume formulas be used to solve problems?
Performance Tas	k:	

Unit 4	Understanding	Essential Question
Orchard Hideout	 Coordinate geometry Distance formula Midpoint formula Slope and parallel and perpendicular lines Equation of a circle Completing the square 	How can the coordinate plane be used to express geometric relationships algebraically? How can coordinates be used to prove geometric properties?

	Points equidistant from the endpoints	
	of a segment are on the perpendicular	
	bisector of the segment (and vice	
	versa)	
	Coordinate proofs	
	Centers of triangles	
	Constructions	
	Circle theorems	
	Exterior angle theorem for triangles	
	Midpoint connector theorem	
	Area of sectors of circles	
	Volume formulas	
erformance Task	κ:	