Overview of Year

Math 3 Mathematics Curriculum

SEPT	00	CT	NOV	DEC	JAN	F	EB	MAR	CH	AP	RIL	M	IAY	JUNE
Unit 1 Probabili Distributio	ity ons	Pa Cha F	Unit 2 atterns of ange, Linear functions - 13 days	Unit 3 Reasonin about Statistics Standard Deviation and the Normal Distribution	g Exp Fu :: -{	Jnit 4 conential nctions days	Ur Introdu Graph	nit 5 action to Theory days	Uni Quad Funct -6 d	t 6 ratic	Unit Matr an Syste -13 d	ices d ems	Trigo So Tri	Jone Unit 8 Inometry: Colving Sangles 4 days
				-8 days										

Unit 1	Understanding	Essential Question
Probability Distributions	 Construct sample spaces for chance situations Construct probability distribution A(and)B 	What is a sample space and how can it be useful in finding probability? What is a probability distribution and how is it used? How can an area model be used to find probability? How does the relationship between two events affect What is expected value and how is it used?
Performance Tas	sk:	

Unit 2	Understanding	Essential Question

Patterns of	Part A:	Part A:	
Change, Linear		How are variables related?	
Functions	 How variables are related 		
	 Multiple Representation 	How can multiple representation be used to make sense of	
	Patterns of Change	functions?	
	 Recursive relationships 		
		How can we describe the	
	Part B:	patterns of change of a relationship?	
	 Determine relationships among graph, 	·	
	symbolic rule, table of values and	What does it mean to represent a	
	related situation for a linear function	relationship recursively?	
	 Interpret the slope and y-intercept in 	How can technology be used as a	
	the context	tool to deepen our	
	Write rules for linear functions	understanding?	
	Estimate the graph and function rule		
	for a line of best fit by hand and using	Part B:	
	technology	How can multiple representation	
	Use a linear function to answer	be used to make sense of linear	
	questions about situations	or exponential functions?	
	·	How can data be modeled and	
	 Writing rules for linear functions 	the model used to answer	
		questions about situations?	
Performance Task:			

Unit 3 Understanding	Essential Question
 Variation Standard Deviation The effect of outliers Normal distributions 	What does the standard deviation tell you about a distribution? What is a normal distribution and how is it used to describe data?

Unit 4	Understanding	Essential Question

Exponential Functions	Recognize and represent exponential growth and decay patterns	How can multiple representation be used to make sense of linear
Functions	 growth and decay patterns Use multiple representation to make sense of exponential models Use reasoning, estimation and curve fitting to model data patterns exhibiting exponential patterns Write rules describing exponential patterns Use exponential rules to answer questions about situations Compare linear & exponential 	be used to make sense of linear or exponential functions? How can data be modeled and the model used to answer questions about situations?
Performance Tas	functions	

Performance Task:

Unit 5	Understanding	Essential Question
Introduction to Graph Theory	 Use vertex-edge graphs to model problems Use Euler circuits to solve problems Use matrices to represent and analyze graphs Use vertex coloring to solve a variety of problems Use vertex edge graphs to solve problems involving optimization 	How can vertex edge graphs be used to model and solve problems?
Performance Tas	k:	

Unit 6	Understanding	Essential Question
Quadratic Functions	 Quadratic Relations and Equations: Use context to make sense of quadratic relations; Solve quadratic 	How can you recognize a quadratic relation?

dratic formula	be used to make sense of quadratic relations?
	dratic formula

Unit 7	Understanding	Essential Question
Matrices and Systems	 Solving Linear Systems is a review unit from 8th and Algebra, but emphasize using context, writing equations, using different strategies, as well as analyzing systems for no, one, and infinite number of solutions Use graphing calculator as a tool as well as algebraic manipulation Begin to discuss when to use what strategy (efficiency) 	Part A: How can a system of equations be used to solve problems? Which method is more efficient when? How can you tell by examining a system how many solutions it has? Part B: How can matrices be used to describe, interpret, and analyze problem situations?
	 Part B—Matrices Constructing matrices to organize, display, interpret and analyze a situation Understand. carry out and interpret matrix operations Use matrix operations to solve problems Examine the properties of operations and matrices and compare those with real numbers Use matrices to solve systems of linear equations using technology 	How can matrix operations be used to solve problem situations? How can matrices be used to solve systems of linear equations?

Performance Task:		

Solving tangent ratios of acute angles in right triangles and use those ratios to solve applied problems.	How can trigonometry be used to solve problems in context? How can the properties of sine, cosine and tangent ratios be used
triangles that involve triangulation. • (Optional: SSA special cases)	to solve applied problems?