UNIT OVERVIEW

	STAGE ONE: Identify Desired Results				
	NYS Chemistry	Long-Term Transfer Goal			
Standards: At the end of this unit, students will use what they have learn					
		• Describe how physical and chemical properties of matter can be used			
	3.2l, 3.3a, 3.1cc, 3.1kk,	productively in real-world applications to solve problems.			
	4.2a, 4.2b, 4.2c, 3.1s,	Mea	ning		
	3.1w, 3.1v, 3.2c, 3.1k,	Enduring Understandings	Essential Questions		
	3.1ff, 3.1gg	Students will understand that	Students will consider such questions as		
ards		 Chemistry concepts are used for special effects in movies. Elements and compounds undergo changes of state and re-arrangements of atoms that accompany changes in energy. Their behaviors correspond to the nature of each element involved, the polarities, the arrangement of atoms in compounds and molecules, and the amounts of energy added to or removed from the system. 	 How does chemistry relate to moviemaking? How can you predict the behavior of elements, compounds and molecules in order to use them in special effects? 		
pu		Acquisi			
oals/Sta		What knowledge will students learn as part of this unit?	What skills will students learn as part of this unit?		
Established Goals/Standards		• Electrolysis of water is a technique that uses electricity to decompose water into 2 parts of hydrogen gas and 1 part of oxygen gas.	Section 1: Categorize; predict; observe; follow diagrams to set up equipment; using equations to represent a reaction.		

East High School, Rochester, NY

Grade: 9-12 Unit #: 1

states that the atoms on the r the same as the product side of • The subscript formula for a s Al ₂ O ₃ , give the each element i • The three stat solid, liquid, an • During any pl solid to liquid, an • During any pl solid to liquid, an • During any pl solid to liquid, an • An energy cu vs. Heat can be the x-axis if a c is used. • As he a substance, th energy of its pa Kinetic energy • During a phase absorbed to ov intermolecular which hold the or liquid phase • When the val liquid equals th pressure, a liqu	a reaction. s in the chemical ubstance, such as number of atoms of n that substance. tes of matter are d gas. hase change from and from liquid to gas, required but the bes not change. rve of Temperature plotted using time in onstant source of heat at energy is added to e average kinetic articles increases. $(KE) = 1/2 \text{ mv}^2$. Se change, energy is ercome the attractive forces substance in the solid for pressure of a e atmospheric id will boil. At STP this called the normal	Section 2: Organize data in a table; use lab equipment for temperature measurement; Construct graph from data collected; create illustrations to describe particle motion; observations Section 3: Observe and classify Section 4: follow directions; make observations; compare and contrast physical properties of mixtures; Section 5: Use laboratory equipment to measure mass and volume; create line graphs using data; explain accuracy and precision; perform density calculations; analyze data to reach conclusions (identify unknowns); predict results of an experiment based on density Section 6: construct electrical circuit for conductivity testing; observe and describe material samples; classify materials as metallic or non-metallic Section 7: Follow directions to prepare a polymer; observe and describe; use drawings to represent chemical reactions
---	---	---

East High School, Rochester, NY

• Fog is an example of a colloidal	Section 8: Identify metal ions based
dispersion or colloid. The	on flame tests (color)
observation that a beam of light	
passing through a colloid is visible is	Section 9: observe and describe
called the Tyndall effect.	combustion; use equations to
• Density is a physical property of all	represent combustion; use
substances that is determined by	structural diagrams to represent
mass and volume. The mathematical expression is: D = m/V.	bonding
 Precision of measurements is a 	NYS Process Skills-
term used to show the	Analysis, Inquiry, and Design
reproducibility of a measurement.	
• Accuracy is the term used to show	M1.1 Use algebraic and geometric
how close the measurements are to	representations to describe and
the true value.	compare data.
Scientific notation uses powers of	 organize, graph, and analyze data
ten to simplify working with very	gathered from laboratory activities
large and very small numbers.	or other sources
• All of the elements of the periodic	 measure and record experimental
table fall into one of three groups:	data and use data in calculations
metals, nonmetals, and metalloids.	 use knowledge of geometric
 Alloys are solutions of one (or 	arrangements to predict particle
more) metal in another. The alloy,	properties or behavior
such as brass, has superior	M2.1 Use deductive reasoning to
properties to any of the components.	construct and evaluate conjectures
 Polymers are very large molecules 	and arguments, recognizing that
which are built from repeating units	patterns and relationships in
of monomers. Starch and plastics are	mathematics assist them in arriving
common polymers used on a daily	at these conjectures and arguments.
basis.	 interpret a graph constructed from
	experimentally obtained data

		· · · · · · · · · · · · · · · · · · ·
	 Metal cations can be identified by 	S1.1 Elaborate on basic scientific and
	the color that they emit when they	personal explanations of natural
	are excited in a flame.	phenomena, and develop extended
	 Carbon has unique bonding 	visual models and mathematical
	capabilities which leads to the	formulations to represent thinking.
	enormous field of organic chemistry,	 use theories and/or models to
	the study of the molecular	represent and explain observations
	compounds of carbon.	 use theories and/or principles to
	 The simplest family of compounds 	make predictions about natural
	in organic chemistry, hydrocarbons,	phenomena
	are used for combustion.	 develop models to explain
		observations
		S3.1 Use various means of
		representing and organizing
		observations (e.g., diagrams, tables,
		charts, graphs, equations, and
		matrices) and insightfully interpret
		the organized data.
		 organize observations in a data
		table, analyze the data for trends or
		patterns, and interpret the trends or
		patterns, using scientific concepts
		Interconnectedness: Common
		Themes
		Through systems thinking, people
		can recognize the commonalities
		that exist among all systems and how
		parts of a system interrelate and
		combine to perform specific
		functions.
		Examples include:

 use the concept of systems and surroundings to describe heat flow in a chemical or physical change, e.g., dissolving process Models are simplified representations of objects, structures, or systems used in analysis, explanation, interpretation, or design. 2.2 Collect information about the behavior of a system and use modeling tools to represent the operation of the system. 2.3 Find and use mathematical
models that behave in the samemanner as the processes underinvestigation.2.4 Compare predictions to actualobservations, using test models.
Identifying patterns of change is necessary for making predictions about future behavior and conditions. Examples include: • use graphs to make predictions, e.g., half-life, solubility • use graphs to identify patterns and interpret experimental data, e.g., heating and cooling curves

Interdisciplinary Problem Solving
Solving interdisciplinary problems
involves a variety of skills and
strategies, including effective work
habits; gathering and processing
information; generating and
analyzing ideas; realizing ideas;
making connections among the
common themes of mathematics,
science, and technology; and
presenting results.
If students are asked to do a project,
then the project would require
students to:
work effectively
 gather and process information
 generate and analyze ideas
 observe common themes
realize ideas
 present results
NYS Regents Chemistry Reference
Tables-
Table ETable T (density, combined gas law)
Table P
Table Q
Table S (density)

STAGE TWO: Determine Acceptable Evidence		
	Assessment Evidence	
Criteria for to assess understanding: (This is	Performance Task focused on Transfer:	
used to build the scoring tool.)	Your challenge is to create a storyline and produce special effects based on the chemistry you have learned in your Active Chemistry class. You will need to demonstrate the special effects you created. Your special effects will be	
 Demonstration Safety Quality 	evaluated on their quality, entertainment, and the knowledge of chemistry you exhibited in putting them together.	
 Interest and appeal to 	• Develop a script for a simple scene in a movie.	
an audience	• Choose some special effects to include as part of your scene.	
Supporting	• Write a procedure on how your special effect is done.	
documentation	 Demonstrate the special effect to the "producer." 	
 Script—creativity 	• Write an explanation of how the special effect works, including the chemistry	
 Procedure—clarity, 	behind the demonstration.	
safety, accuracy		
 Chemistry explanation 		
 accuracy and quantity of chemical principles 	Other Assessment Evidence:	
incorporated.	Journaling	
	What do you see?	
	What do you think?	
	What do you think now?	
	Chem Essential Questions	
	Chem to Go questions	
	Chapter Mini-challenge	
	Section quizzes	
	Chapter test	

Subject: Regents Chemistry	Grade: 9-12	Unit #: 1	Title: Movie Special Effects
----------------------------	-------------	-----------	------------------------------

Τ, Μ, Α	STAGE THREE: Plan Learning Experiences	
(Code for Transfer, Meaning Making		
and Acquisition)	Learning Events:	Evidence of learning:
	Learning Events.	(formative assessment)
А	Section 1: Students conduct an experiment using	(joinnative assessment)
	electrolysis to separate water into hydrogen and oxygen,	Students are able to make
	and test the gases to determine behavior of the different	electrolysis proceed and
	substances.	isolate hydrogen and oxygen
		products. Glowing splint
		reignites in presence of
	Demonstration of "eggsplosions" stimulates thinking about	oxygen. Burning splint lights
	how this reaction might be used to create a movie special	hydrogen on fire.
	effect.	
	Deed Chematellite leave the chemister of what here even die	Annuara to Chapleing Lin
	Read ChemTalk to learn the chemistry of what happened in the investigation: chemical formulas; types of matter,	Answers to Checking Up questions.
	chemical symbols; diatomic elements; conservation of	questions.
	mass; balanced equations	
	Section 2: Students observe changes of state of water and	Students collect data and
	describe the process graphically.	correctly graph a heating
		curve for water.
	Students describe the behavior of gas particles, based on	Students are able to explain
	observations of how the temperature, pressure and volume	how the addition of heat
	of the gas are affected as heat is transferred to or away	changes the volume of air
	from the gas.	and why the piston moves.
L		

Students observe a change of state of carbon dioxide and describe the energy transformations involved.	Students identify the change of state involved and correctly ascertain that heat is being added to the dry ice to effect this change.
Read ChemTalk to learn the chemistry of what happened in the investigation: changes of state; temperature; melting and boiling points; heating curves	Answers to Checking Up questions.
Section 3: Students explore different ways that materials can be mixed together to make new materials.	Student cheenvetiens in Joh
Read ChemTalk to learn the chemistry of what happened in the investigation: pure substances and different types of mixtures; Tyndall Effect.	Student observations in lab write-up. Answers to Checking Up questions.
<u>Section 4</u> : Students make modeling dough from common kitchen materials.	
Read ChemTalk to learn the chemistry of what happened in	Students are able to follow procedure and make modeling dough.
the investigation: physical properties; composite materials <u>Section 5</u> : Students make measurements in the laboratory to the precision of the instruments used.	Answers to Checking Up questions.
	Students are able to read mass and volume measurements to correct
Students determine the densities of various liquid and solid materials.	precision of instruments used.

Students learn the difference between accuracy and precision in experimental measurements.	Students make graphs correctly, graphs are close to straight lines, and slopes are close to tabulated values for densities of the materials.
Students retain significant figures in calculations involv experimental measurements.	Students are able to explain the difference between accuracy and precision.
Read ChemTalk to learn the chemistry of what happend the investigation: density as a physical property;	ed in Students are able to carry out calculations with correct significant figures.
measurements and uncertainty; calculation and signific figures; accuracy and precision	cant Answers to Checking Up questions.
Section 6: Students observe some chemical and physical properties of various materials. Read ChemTalk to learn the chemistry of what happene	Students observations in lab
the investigation: metals, non-metals and metalloids; a <u>Section 7</u> : Students will make a polymer-based materia	Answers to Checking Up
has properties different from other states of matter that you have studied.	"slime."
Read ChemTalk to learn the chemistry of what happene the investigation: polymers	ed in Answers to Checking Up questions.
Section 8: Students produce colored flames.	

	Read ChemTalk to learn the chemistry of what happened in the investigation: production of light by excited electrons	Students observe characteristic colors emitted by metal ions upon excitation.
	Section 9: Students combust a material present in fruit rinds.	Answers to Checking Up questions.
		Student results in lab report.
	Read ChemTalk to learn the chemistry of what happened in the investigation: hydrocarbons; combustion; balanced	
	equations	Answers to Checking Up questions.
M	Section 1-9: Student journaling: What Do You See and What Do You Think prior to starting investigations activates their prior knowledge about the topics. What Do You Think Now has students reflect on their pre- investigation writing after they have completed the investigation.	Journal responses
	Chem Essential Questions at the end of each investigation has students journal about the macro (what you observed), nano (description of what is happening at the atomic and molecular level) and symbolic (using pictures and chemical formulas and equations to represent what you saw) representations of the investigation. This includes the How Do You Know Questions.	Journal responses to Chem Essential Questions.

Chem to Go questions are used in each section to elaborate and extend the knowledge obtained through the investigation.	Answers to Chem to Go questions.
<u>Section 2</u> : Students create an animation to illustrate the behavior of particles in different phases of matter, and as the material changes phase.	Students are able to create flipbooks that depict particle movement. Animations of solid and liquid match description required.
<u>Section 3</u> : Students test some materials to determine what kinds of mixtures they are.	Students correctly classify tested materials.
<u>Section 4</u> : Students adjust the properties of the modeling dough by adding another material to it.	Students make conclusions about the alteration of properties of dough when adding other materials to it.
Students compare the properties of an emulsion to those of a composite material.	Student results in lab report.
<u>Section 5</u> : Students use density measurements to determine the identity of a material.	Students correctly identify unknown liquid and unknown solid.
Students locate sources of the variation in the class's experimental results.	Students' discussion on variation in class results for density addresses appropriate issues.
<u>Section 6</u> : Students classify the materials tested as metals or nonmetals.	Student results in lab report.

	Section 7: Students observe the material's properties and compare them to those of solids and liquids.	Student results in lab report.
	Students describe the process of crosslinking in polymeric materials.	Students make sketches of sodium tetraborate reacting to cross-link polymer chains.
	<u>Section 8</u> : Students identify the metal ions present in materials by the colors of light a material gives off when held in a flame.	Students are able to identify metal ions present in unknown solutions.
	<u>Section 9:</u> Students make two-dimensional drawings showing the chemical bonding structure in simple	Drawings resemble correct representations of the
	hydrocarbons.	molecules.
Т	Sections 1-9: Student journaling for every investigation includes "Why do you believe?" and "Why should you care?" questions in the essential questions. "Why do you believe?" has students create their own analogies to the phenomenon they observed in the investigation, or make other connections to real-world phenomena. "Why should you care?" has students journal about how what they learned can be used in their final chapter challenge. Preparing for the Chapter Challenge requires students to write a short paragraph describing how they might use the learning from this section to contribute to the Chapter Challenge.	Journal responses
	Inquiring Further is a research-based exploration of real- world applications of the phenomenon studied. Students	Report from Inquiring Further investigation.

Subject: Regents Chemistry	Grade: 9-12	Unit #: 1	Title: Movie Special Effects
----------------------------	-------------	-----------	------------------------------

will choose one of the Inquiring Further options (if more	
than one) for each section.	