UNIT OVERVIEW

	STAGE ONE: Identify Desired Results		
	NYS Chemistry	Long-Term Transfer Goal	
	Standards: 3.1ll, 3.4a, 3.3c, 3.2b,	 At the end of this unit, students will use what they have learned to independently Apply chemical principals to real-life situations to solve problems or create solutions. 	
	3.2k, 3.2j, 3.1k, 3.1rr,	Mea	ning
	3.4f, 4.1c, 3.3a	Enduring Understandings Students will understand that	Essential Questions Students will consider such questions as
		 Design processes are open-ended and involve principles as well as practical experience. Why change happens is controlled by various factors that compete with each other. Structure informs properties of materials. 	 How do you design a robust and repeatable process that makes something? How do you control the direction a change will take? How can you take advantage of knowledge of a material's properties to make the material do something?
rds		Acquisi	tion
:/Standa		What knowledge will students learn as part of this unit?	What skills will students learn as part of this unit?
Established Goals/Standards		Entropy is a thermal energy process and is frequently thought to be a measure of the disorder in a system. A substance in the gas phase will have more entropy than that substance in the solid phase.	Section 1: follow directions; design and conduct experiments to optimize results; present findings; evaluate findings and draw conclusions

East High School, Rochester,

NY

Standard temperature and pressure (STP) are the conditions of 1 Atmosphere and 273 Kelvin. Much of the mathematics in chemistry is found in stoichiometric and thermodynamic calculations. Using a balanced equation, the quantities of reactants and products can be calculated.	Section 2: design and experiment to answer a question; use a table to collect data; use models to represent molecules; analysis of chemical equations Section 3: develop a procedure to answer a question given materials and method limitations; determine a rule from a pattern; use an analogy to determine how to solve a mathematical problem
The metal activity series is used in single-replacement reactions and in making an electrochemical cell. Fluorescence is the immediate emission of light by an atom as an electron returns from an excited state to its ground state. The light is the same wavelength as what was absorbed by the atom, taking it from a ground state to an excited state. Phosphorescence is a process similar to fluorescence where light is emitted by an atom or molecule but, unlike fluorescence, the light persists after the exiting source is removed.	Section 4: follow instructions to make an electrical circuit; evaluate the effectiveness of a chemical reaction; analysis of information to draw a conclusion; predict results of an experiment based on given information; follow procedures to conduct an experiment Section 5: observe and record results; compare and contrast; follow procedures to conduct an investigation; drawing a conclusion based on data Section 6: follow instructions to conduct a testing apparatus; observe; make predictions; organize data in a table; use diagrams to

An electrolyte is an ionic substance which will conduct electricity in solution or when molten. The rate of a chemical reaction is dependent on several factors, such as temperature , surface area , concentration , and, if available, the use of a catalyst .	represent molecular interactions; use drawings to represent experimental set-up; Section 7: observe; hypothesize; make laboratory measurements; draw conclusions based on evidence; organize data in a table; summarize; design an experiment
All chemical reactions have an energy barrier that must be overcome and this is called the activation energy .	Section 8: organize data in a table; follow instructions; predict; observe; explaining relationships; use models to explain particle behavior; compare and contrast
The law of conservation of energy states that energy states that energy cannot be created or destroyed. If the system under study gains energy (endothermic), then the surroundings must lose energy. If the system loses energy (exothermic), then the surroundings must gain energy. According to the Gibbs free energy	NYS Process Skills- Analysis, Inquiry, and Design S1.1 Elaborate on basic scientific and personal explanations of natural phenomena, and develop extended visual models and mathematical formulations to represent thinking. • use theories and/or models to
equation, a reaction will be spontaneous if it is exothermic and entropy is increasing. If it is endothermic and entropy is decreasing, it will not be spontaneous. Other combinations of	 represent and explain observations use theories and/or principles to make predictions about natural phenomena develop models to explain observations

Grade: 9-12 Unit #: 4

enthalpy and entropy will depend on their values and the temperature. $\Delta G = \Delta H - T\Delta S$	 S2.1 Devise ways of making observations to test proposed explanations. design and/or carry out experiments, using scientific methodology to test proposed calculations S3.1 Use various means of representing and organizing observations (e.g., diagrams, tables, charts, graphs, equations, and matrices) and insightfully interpret the organized data. organize observations in a data table, analyze the data for trends or patterns, and interpret the trends or patterns, using scientific concepts S3.3 Assess correspondence between the predicted result contained in the hypothesis and the actual result, and reach a conclusion as to whether or not the explanation on which the prediction is supported.
	Themes

East High School, Rochester, NY

Through systems thinking, people
can recognize the commonalities
that exist among all systems and
how parts of a system interrelate
and combine to perform specific
functions.
Examples include:
 use the concept of systems and
surroundings to describe heat flow
in a chemical or physical change,
e.g., dissolving process
Models are simplified
representations of objects,
structures, or systems used in
analysis, explanation, interpretation,
or design.
2.1 Revise a model to create a more
complete or improved
representation of the system.
 show how models are revised in
response to experimental evidence,
e.g., atomic theory, Periodic Table
2.2 Collect information about the
behavior of a system and use
modeling tools to represent the
operation of the system.

Grade: 9-12 Unit #: 4 T

2.4 Compare predictions to actual
observations, using test models.
Interdisciplinary Problem Solving
Solving interdisciplinary problems
involves a variety of skills and
strategies, including effective work
habits; gathering and processing
information; generating and
analyzing ideas; realizing ideas;
making connections among the
common themes of mathematics,
science, and technology; and
presenting results.
If students are asked to do a project,
then the project would require
students to:
 work effectively
 gather and process information
 generate and analyze ideas
observe common themes
• realize ideas
 present results
NYS Regents Chemistry Reference
Tables-
Table A – Standard Temperature
and Pressure

East High School, Rochester, NY

1		
		Table I – Heats of Reaction (Δ H)
		Table J – Activity Series
		Table M: Acid base Indicators
		Table T – Mole Calculations

STAGE TWO: Determine Acceptable Evidence	
Assessment Evidence	
Criteria for to assess	Performance Task focused on Transfer:
understanding: (This is	
used to build the scoring	You have been asked to develop a Chemical Dominoes toy that meets all the
tool.)	requirements set by the company. The sequence must run successfully if set up properly. This will require testing to make sure the process works reliably. You
 How many chemical 	will demonstrate your final product to an audience of executives at the toy
reactions or physical	company. You will be required to present a prototype of your product and all
changes must you use?	the accompanying materials. During your demonstration, you will briefly
 How well does your 	explain the chemistry behind each step of the sequence. You will also provide a
prototype work?	detailed written explanation of how the chemistry behind your Chemical
 How entertaining is the 	Dominoes works.
display? Colorful? Funny?	
Surprising?	If the company decides to produce your product, they will want to patent it. To
 How many tries should 	make this possible, you must keep an extremely complete notebook, carefully
a team get to make the	recording everything you try in developing this product and the results of each
demonstration work for	experiment (for every component, not just the whole product all together). This
the audience?	will allow the company to show the lawyers the extent of your investigation
• How sturdy is the	into the effects you studied, and document the failures as well as the successes
prototype?	that went into your invention. Pay particular attention to recording each step
• How can you tell if the	you go through in setting up the completed sequence, as well as any
prototype is targeted to	troubleshooting you do to make everything work together in a sequence
the appropriate age	(including any problems that must be solved at the last minute).
group?	Other Assessment Evidence:
 How enjoyable will it 	
be for people to build?	Journaling

For the written material you submit:	What do you see? What do you think? What do you think now?
 Have all safety issues 	Chem Essential Questions
been addressed?	Chem to Go questions
 How understandable 	Chapter Mini-challenge
are the directions and	Section quizzes
the diagram for	Chapter test
assembly?	
• How clear and accurate	
are the explanations of	
the chemistry?	

T, M, A (Code for Transfer, Meaning Making and Acquisition)	STAGE THREE: Plan Learning Experiences	
	Learning Events:	Evidence of learning: (formative assessment)