

T* <u>UNIT 4</u> *STUDENT* BON::DING & Naming Compounds

Vocabulary:

- 1. Molecule
- 2. Compound
- 3. Bond
- 4. Octet Rule
- 5. Exothermic
- 6. Endothermic
- 7. Ionic Bond
- 8. Covalent Bond

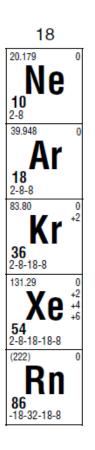
- 9. Oxidation number
- 10. Polyatomic ions
- 11. Stock system
- 12. Binary compound
- 13. Ternary compound
- 14. Polar molecule
- 15. Nonpolar molecules
- 16. Intermolecular forces (IMF's)

<u>Review</u> - What is a compound? A substance that has atoms of 2 or more _____ chemically bonded together (Ex: NaCl)

<u>BOND</u> = forces of ______ between the protons (nucleus) of one atom and the electrons of another atom

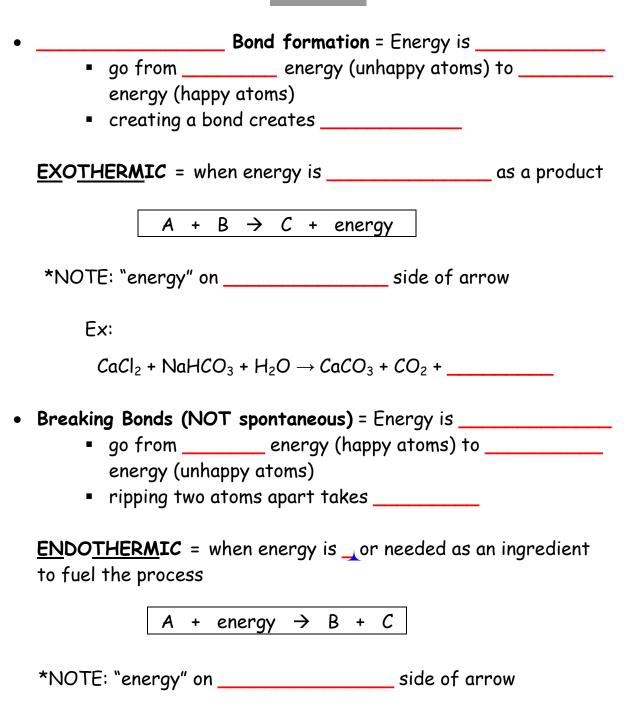
Only ______ electrons participate in bonding

Bonds are formed as a result of a ____


LAW of CONSERVATION of ENERGY/MASS/CHARGE = during a chemical reaction, energy, mass, and charge can _____ be created or destroyed (That means that all three are _____).

OCTET RULE \rightarrow atoms bond together to get ____ valence electrons around them $8_{\text{great}}^{\text{is}}$

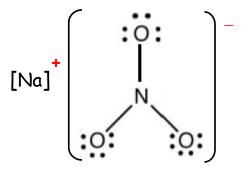



Recall: Noble Gases already have 8 valence electrons \rightarrow this is why they don't react/bond with other elements

- Which Noble Gas, He, Ne, Ar, or Kr would be most likely to form a bond with another element? (Hint: Look at your Periodic Tables) _____
- > Why do you think that is?
- Which element Na, O, F, P, or S would be most likely to form a bond with Kr?
- > Why do you think that is?

Energy associated with bonding:

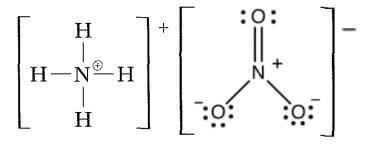
Ex: an ice pack → chemicals combine, bonds are broken, and energy is consumed → you feel "cold" because you're losing heat to the ice pack

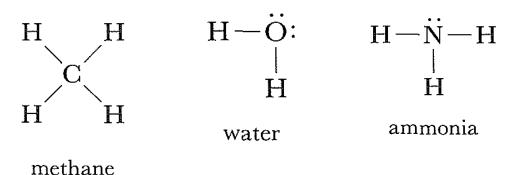

The Two Most Common Types of Compounds:

- 1. **IONIC** compounds formed by the TRANSFER of ELECTRONS from one atom (or polyatom) to another
 - a. METAL LOSES e⁻ to a NONMETAL

Ex:

Na[×] •Cl


b. METAL combines with a POLYATOMIC ION

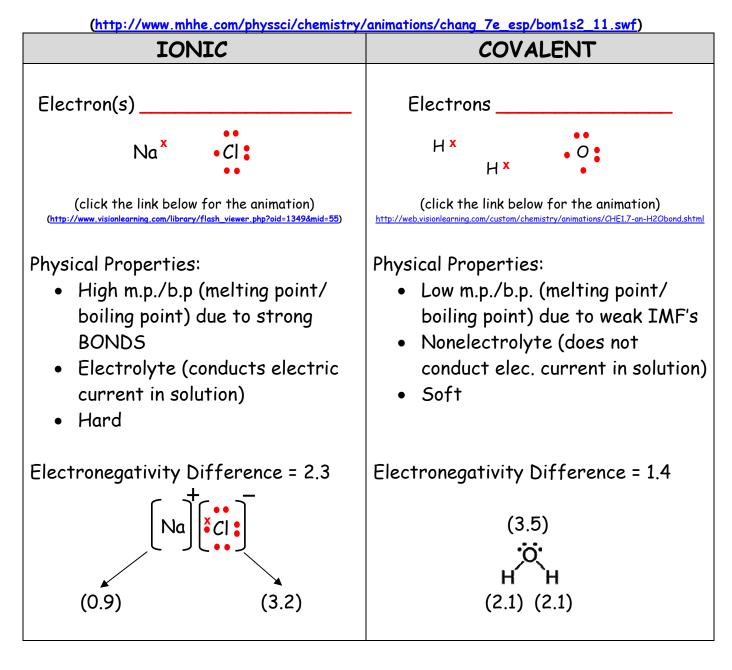

c. POLYATOMIC ION combines with a NONMETAL

$$\begin{bmatrix} H \\ | \\ H - N^{\oplus} - H \\ | \\ H \end{bmatrix}^{+} [: \dot{C} i:]^{-}$$

d. POLYATOMIC ION combines with another POLYATOMIC ION

2. COVALENT - compounds formed when 2 or more nonmetals SHARE ELECTRONS

IONIC vs. COVALENT SUMMARY:


NATURE of the ELEMENTS	CLASSIFICATION
Metal + Nonmetal	
Metal + Polyatomic Ion	
Nonmetal + Polyatomic Ion	
Polyatomic Ion + Polyatomic Ion	
Nonmetal + Nonmetal	

METALS = pure substances found to the left of the "staircase"

- atoms of a metal do not bond w/ other metal atoms
- metals "share" a "sea of ______ valence electrons"
 allows metals to conduct electric ______ (_____ energy)

Click here to see animation: <u>http://www.ausetute.com.au/metallic.html</u>

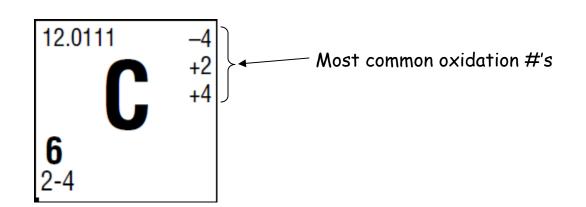
IONIC vs. COVALENT CONTINUED:

The greater the ______ difference between two elements the greater the percent ______
The closer the ______ difference is to zero, the greater the percent ______

Electronegativity Scale

0.0 ----- 4.0

** We can classify a compound as ionic or covalent in one of two ways:


- 1) Look at the elements in the compound (TRUMP CARD):
 - METAL and a NONMETAL = ______
 - Two NONMETALS = ______
- 2) Do the math:
 - The GREATER the electronegativity difference between the elements, the GREATER the _____
 - The CLOSER the electronegativity difference between the elements, the GREATER the _____

Practice: Find the electronegativity difference for each of the following compounds and then state whether each is ionic or covalent.

Compound	Electronegativity difference	Ionic or covalent?
1. H ₂ O		
2. CaO		
3. NaCl		
4. FeCl ₃		
5. H ₂ O ₂		
6. P ₂ O ₆		
7. LiH		
8. CH4		

I. NAMING AND WRITING CHEMICAL FORMULAS:

Each element within a compound has its own "charge." We call these charges

A. <u>Rules for assigning OXIDATION STATES (numbers)</u>:

 (elements not bonded to any other type of element) have an oxidation number of _____. This includes any formula that has *only* one chemical symbol in it (single elements & diatomic elements).

Examples: _____

2) In ______ (remember, they are neutral and have 2+ different elements bonded together), the sum of the ______ must add up to ______ so the ions within a compound have oxidation numbers equal to their oxidation # found on periodic table/individual charges.

Ex: NaCl Ex: Mg₃N₂

Ex: HNO3

*We almost always write the (+) element first and the (-) element last in a compound formula.

EXAMPLE: H CI

EXCEPTION to this rule: $N H_3$

3) GROUP 1 METALS always have an oxidation number of _____ when in a compound (bonded to another species).
 GROUP 2 METALS always therefore have a _____ oxidation number when located within a compound.

Ex: Na Cl Ca Cl₂

4) FLUORINE is always a _____ in compounds. The other HALOGENS (ex: Cl, Br) are also _____ as long as they are the most electronegative element in the compound.

Ex: Na F H Br Li Cl

5) HYDROGEN is a _____ in compounds unless it is combined with a metal (and is at the end of the formula), then it is ____.

Ex: HCI Li H

6) OXYGEN is USUALLY _____ in compounds.

Ex: H_2O CO_2

When combined with fluorine (F), which is more electronegative, oxygen is ____.

Ex: 0 F₂

When in a **PEROXIDE** oxygen is _____. A peroxide is a compound that has a formula of ______.

Ex: H_2O_2 Na_2O_2

BONDING NOTE PACKET - 9

7) The sum of the oxidation	numbers in polyatomic ions must equal
the charge on the	(see Table E).

	-2		
Ex:	$(Cr_2 O_7)$	Cr:	
		<u>0:</u>	
*Compounds containing			have
	and		bonds.

Practice: Identify and list the polyatomic ions in the following compounds (use Table E). We'll do the first one together as an example.

(NH ₄) ₃ PO ₄	
NaHCO3	
NH ₄ NO ₃	
H ₂ SO ₄	
KNO ₃	

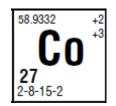
Ex 1: OH-

- Oxidation number of Oxygen is ALWAYS _____ (except in peroxides)
- Therefore H must have a charge of _____

**Note: Must add up to -1 (that is the charge on OH^{-})

Ex 2: PO₄³⁻

- Oxidation number of O = ____ (4 × (____) = -8 total)
- Oxidation number of P = ____ (is that one of the choices on the table?)


B. IUPAC NAMING RULES for IONIC COMPOUNDS:

IUPAC =		way of na	iming compour	ıds; stands
		f Pure and Appl	5	
		name a	•	
• There is a :	SYSTEMAT	IC method for r	naming ionic co	ompounds
FORMULA -> CHE/			(an tha	
1. Name the				-
 Name the NONMETAL) 		_ element	(or	The
•		of the negative e	alamant with '	TNE"
•	•			IUC
Examples:				table salt)
		· · · · · · · · · · · · · · · · · · ·		
		·····		
	$LiI \rightarrow _$			
CHEMICAL NAME	→ Formul	-A		
Examples \rightarrow 1	ithium brom	ide →		
:	Sodium fluor	ride \rightarrow		
	Magnesium c	chloride \rightarrow		
F	Potassium ioo	dide →		
3. POLYATOMIO TABLE E	C IONS are	named exactly o	as they are se	een on
Example	s: NaOH→			
	$KNO_3 \rightarrow$			
	Ammoniur	n hydroxide \rightarrow		
	Calcium p	hosphate \rightarrow		
	PONDING NG	TE DACKET 11		

BONDING NOTE PACKET - 11

4.	TRANSITION METALS +	end to have more than one oxidation
	number so you must use a	to indicate their
	oxidation number within a	compound. The roman numeral appears
	in parentheses	the element symbol (STOCK SYSTEM)

Example: Cobalt chloride *could* have a formula of $CoCl_2$ or $CoCl_3$ since cobalt can have an oxidation number of +2 or +3.

 $CoCl_2$

CoCl₃

Name:	Name:	
Write the formula	a for the following	
1) zinc oxide =		
2) iron(II) chlorid	le =	
3) mercury(I) sulf	ide =	

C. IUPAC NAMING RULES for COVALENT COMPOUNDS:

Recall: Covalent = _____ + ____

Binary Compound = ____ elements bonded together (Ex: CO_2) **Ternary Compound** = ____ elements bonded together (Ex: $C_6H_{12}O_6$)

The procedure for naming covalent compounds is very similar to the procedure for naming ionic compounds. The only difference however, is that you use _______ to designate how many of each element you have in the covalent compound. The following are the prefixes you will use:

# of atoms (subscript)	1	2	3	4	5	6	7	8	9	10
Prefix	mono	di	tri	tetra	penta	hexa	septa hepta	octo	nona	deca

*One exception: Drop the MONO prefix if there is only one atom of the ______ element in the compound name

**Final O's or A's of prefix are dropped when an element begins with a VOWEL (Ex: Carbon monoxide)

RULES for Writing Chemical Formulas of Covalent Compounds:

- 1. _____ electronegative element is written _____.
- electronegative element is written _____.
- 3. ______ of each element in

the formula (Example: CO_2 = carbon <u>di</u>oixide)

Name the following covalent compounds:

Chemical Formula	Chemical Name
СО	
CO ₂	
N ₂ O	
N ₂ O ₅	
CCl ₄	
SF ₆	

Give the formulas for the following compounds:

Chemical Name	Chemical Formula
Nitrogen monoxide	
Carbon Tetrafluoride	
Bromine pentachloride	
Dinitrogen pentasulfide	
Sulfur tetrabromide	

II. LEWIS DOT DIAGRAMS for IONIC COMPOUNDS

- Gives us a _____ of the compound
- Shows us the ______ of atoms in the compound

*Within IONIC COMPOUNDS there is a TRANSFER or DONATION of electrons from the METAL to the NONMETAL

Steps for Drawing Ionic Bonding Lewis Dot Diagrams:

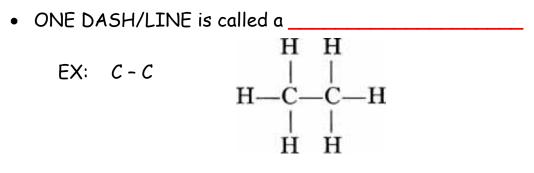
- 1) Draw all elements (of the given compound) and their individual
 - Lewis Dot Diagrams Example: NaCl

- 2) Draw ELECTRONS going from the METAL to the NONMETAL. Your goal is to match up all UNPAIRED ELECTRONS (there should be none left unpaired when done).
- 3) Redraw your now bonded compound with dots and appropriate new CHARGES.

Draw the Lewis Dot Diagram for the following ionic compounds:

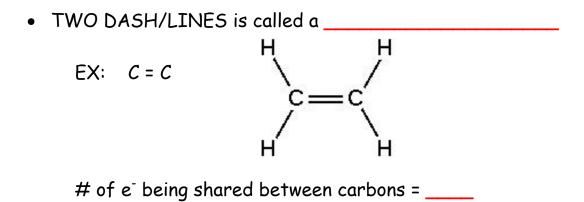
1. KF	
2. BaS	
3. AlBr ₃	

III. LEWIS DOT DIAGRAMS FOR COVALENT COMPOUNDS


http://www.d.umn.edu/~pkiprof/ChemWebV2/VSEPR/index.html

1) Write the ELEMENT SYMBOLS and draw their VALENCE ELECTRONS. If there are more than TWO atoms, place the LEAST ELECTRONEGATIVE in the CENTER.

Example: H₂O


2) Draw DASH/LINES (between the elements) connecting all lone electrons—your goal is to "pair up" ALL unpaired electrons

Example (cont'd):

of e⁻ being shared between carbons = _____

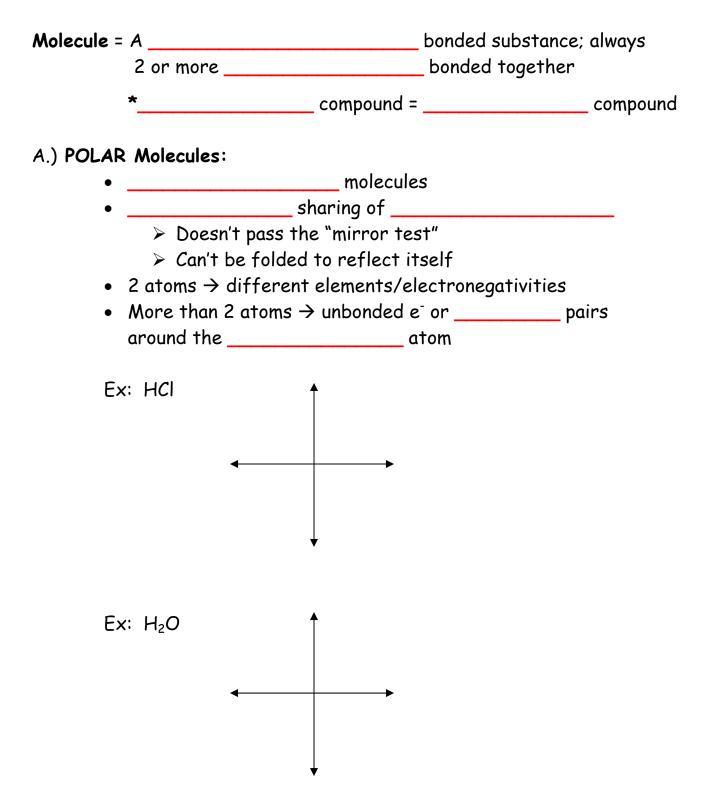
of e⁻ pairs being shared between carbons = _____

of e⁻ pairs being shared between carbons = _____

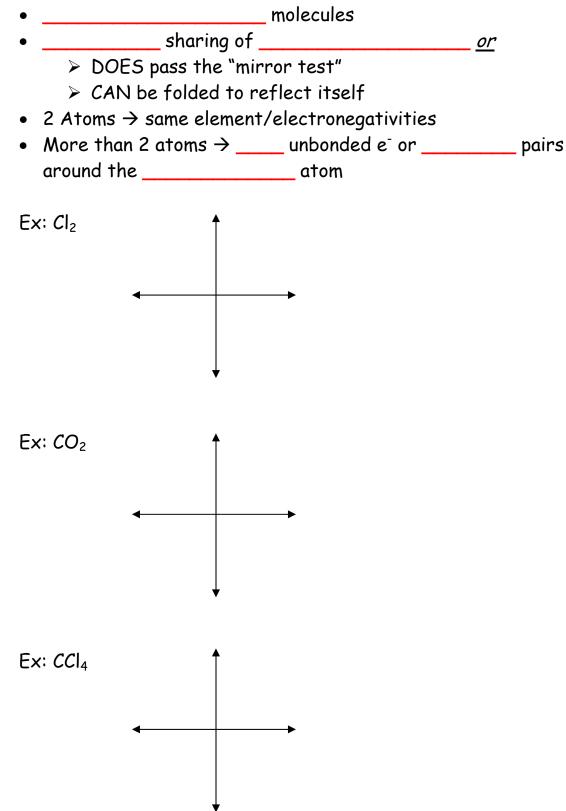
BONDING NOTE PACKET - 16

THREE DASH/LINES is called a ______

EX: $C \equiv C$


H—C■C—H

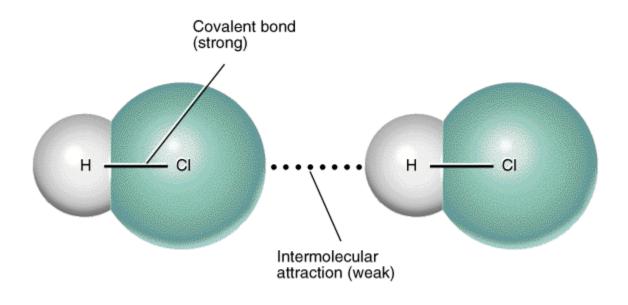
- # of e⁻ being shared between carbons = _____
- # of e⁻ pairs being shared between carbons = _____


Draw the Lewis Dot Diagram for the following covalent compounds:

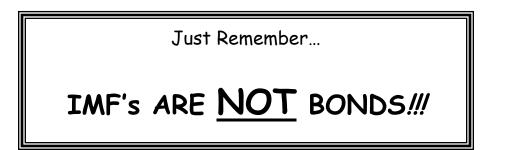
1. HCI	
2. N ₂	
3. <i>CC</i> I ₄	
4. NH3	

IV. POLAR vs. NONPOLAR MOLECULES:

B.) NONPOLAR Molecules:


BEWARE! There are often POLAR BONDS inside NONPOLAR MOLECULES (look back at the previous 2 examples)

BONDING NOTE PACKET - 19


C. Intermolecular forces, A.K.A. IMF's

- ONLY IN COVALENT MOLECULES, NEVER IONIC COMPOUNDS!
- _____ forces that act BETWEEN ______ that hold molecules to EACH OTHER
- Only exist in _____ & _____ states
- Called WEAK forces because they are much weaker than CHEMICAL BONDS

*REMEMBER: IMF's occur BETWEEN molecules, whereas BONDING occurs WITHIN molecules

http://www.northland.cc.mn.us/biology/Biology1111/animations/hydrogenbonds.html

Type of IMF	Description/Example(s)
London dispersion forces (LDF's)	 Weakest of all the IMF's Only important for NONPOLAR molecules Electron-electron repulsion creates BRIEF DIPOLES in atoms/molecules http://antoine.frostburg.edu/chem/senese/101/liquids/faq/h-bonding-vs-london-forces.shtml
Dipole (dipole-dipole)	 Molecules such as HCl have both POSITIVE and a NEGATIVE ends, or POLES Two poles = Results from an UNEQUAL/ASYMMETRICAL sharing of electrons DIPOLE-DIPOLE = two molecules with permanent dipoles are attracted to one another DIPOLE MOMENT = measure of the of the dipole within a molecule (POLARITY) The GREATER the difference in ELECTRONEGATIVITY between atoms, the GREATER the POLARITY/DIPOLE MOMENT The HIGHER the dipole moment, the STRONGER the intermolecular forces (IMF's) The stronger the IMF's, the higher the m.p. and b.p. <u>http://chemmovies.unl.edu/ChemAnime/DIPOLED/DIPOLED.html</u>
Hydrogen Bonds	 Specific type of interaction In a POLAR BOND, hydrogen is basically reduced to a BARE PROTON w/ almost no ATOMIC RADIUS of all IMF's by far Only occur in molecules containing AND, or http://programs.northlandcollege.edu/biology/Biology1111/animations/hydrogenbonds.html

UNIT OBJECTIVES:

- ✓ Compounds can be differentiated by their chemical and physical properties
- ✓ Two major categories of compounds are ionic and molecular (covalent) compounds.
- ✓ Chemical bonds are formed when valence electrons are: transferred from one atom to another (ionic); shared between atoms (covalent); mobile within a metal (metallic).
- ✓ In a multiple covalent bond, more than one pair of electrons is shared between two atoms. Unsaturated organic compounds contain at least one double or triple bond.
- ✓ Molecular polarity can be determined by the shape and distribution of that charge. Symmetrical (nonpolar) molecules include CO_2 , CH_4 , and diatomic elements. Asymmetrical (polar) molecules include HCl, NH₃, and H₂O.
- ✓ When an atom gains one or more electrons, it becomes a negative ion and its radius increases. When an atom loses one or more electrons, it becomes a positive ion and its radius decreases.
- ✓ When a bond is broken, energy is absorbed. When a bond is formed, energy is released.
- Atoms attain a stable valence electron configuration by bonding with other atoms.
 Noble gases have stable valence electron configurations and tend not to bond.
- Physical properties of substances can be explained in terms of chemical bonds and intermolecular forces. These properties include conductivity, malleability, solubility, hardness, melting point, and boiling point.
- Electron-dot diagrams (Lewis structures) can represent the valence electron arrangement in elements, compounds, and ions.
- Electronegativity indicates how strongly an atom of an element attracts electrons in a chemical bond. Electronegativity values are assigned according to an arbitrary scale.
- ✓ The electronegativity difference between two bonded atoms is used to assess the degree of polarity in the bond.
- Metals tend to react with nonmetals to form ionic compounds. Nonmetals tend to react with other nonmetals to form molecular (covalent) compounds. Ionic compounds containing polyatomic ions have both ionic and covalent bonding.
- ✓ Determine the noble gas configuration an atom will achieve when bonding.
- ✓ Demonstrate bonding concepts, using Lewis dot structures, representing valence electrons: transferred (ionic bonding); shared (covalent bonding); in a stable octet.
- Distinguish between nonpolar and covalent bonds (two of the same nonmetals) and polar covalent bonds.